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Recently, part of our reactions work  has  concentrated on probing the quantum nature of the 

liquid-gas phase transition using isotopic yield distributions [1] which may be discussed in terms of a 
modified Fisher model [2, 3]: 
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where y0 is a normalization constant, τ = 2.3 is a critical exponent [2], β is the inverse temperature and 
Δμ = F( (N-Z)/A) is the free energy per particle.  

Projectiles of 40 A MeV 64Zn, 70Zn and 64Ni beams were used to irradiate  58Ni, 64Ni, 112Sn,124Sn, 
197Au, and 232Th targets. Intermediate mass fragments (IMFs) were detected by a detector telescope 
placed at 20 degrees relative to the beam direction. For each atomic number 6-8 isotopes of very high 
quality were identified using the ΔE − E technique. Multiplicities of IMFs were evaluated from moving 
source fits. The yields of p, d, t, h and α particles, which were identified by the pulse shape 
discrimination method, were also 
evaluated by a moving source fit. After  
correction for accidental contributions, 
the multiplicities of 6He and 8He were 
calculated using the source fit parameters 
obtained for Li isotopes. 

According to the Fisher equation 
given above, we can compare all systems 
on the same basis by normalizing the 
yields and factoring out the power law 
term. For this purpose we have chosen to 
normalize the yield data for each system 
to the 12C yield (I = 0) in that system, i.e. 
we define a ratio: 
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Our data organized by the order 
parameter m = (N-Z) /A, (the difference 
in neutron and proton concentration of 
the fragment). suggest that we are near 
the critical point for a liquid gas phase 

 

 
FIG. 1. Free energy versus m for the case 64Ni+232Th. The 
full line is a free fit based on Landau O(m6) free energy. The 
dashed-dotted-dotted-dotted line is obtained imposing in the 
fit acb 3/16−= and it is located on a line of first order phase 
transitions. The short dashed line corresponds to acb 4−= , 
i.e. superheating. The O(m2) case, F/T = a(m − ms)2,i.e. b = c 
= 0, ms = 0.1, is given by the long dashed line. 
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transition (volume and surface terms equal to zero, Coulomb energy contribution not so important 
compared to the symmetry energy) Fig. 1 shows the quantity F/T= −ln(R)/A versus m = (N-Z)/A. As 
expected the normalized yield ratios depend strongly on m.   

Pursuing the question of phase transitions, in the Laudau approach [1, 4] the ratio of the free 
energy (per particle) to the temperature is written in terms of an expansion: 
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where m is the order parameter, H is its conjugate variable and a−c are fitting parameters.  

The use of the Landau approach is for guidance only. A free fit using Eq. (3) is displayed in Fig.1 
(full line). The dashed-dotted-dotted-dotted line is obtained imposing in the fit acb 3/16−= and it is 
located on a line of first order phase transitions. The short dashed line corresponds to acb 4−= , i.e. 
superheating. The O(m2) case, F/T = a(m − ms)2,i.e. b = c = 0, ms = 0.1, is given by the long dashed line. 
Similar to the phase transitions occurring in 4He-3He liquid mixtures, a nucleus, which can undergo a 
liquid-gas phase transition, should be influenced by the different neutron to proton concentrations. Thus 
the discontinuity observed in Fig.1 (m = 0) could be a signature for a tricritical point as in the 4He-3He 
case. We believe that our data, analyzed in terms of the the Landau O (m6) free energy, suggest such a 
feature but are not sufficient to clearly demonstrate this. 

Once we know the free energy (at least in some cases) we can calculate the NEOS by means of 
the Fisher model [5]. Since we do not have at present experimental information on the density ρ, 
temperature T and pressure P of the system we can only estimate the ‘reduced pressure’ [6]:  
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where Mi are moments of the mass distribution given by: 
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Using the relations above we can calculate the NEOS for the situations illustrated in Fig. 1 but H/T=0 
case. The results are displayed in Fig. 2 where the reduced pressure is plotted versus m for vaporization, 
superheating and first order phase transitions on the tri-critical line. Notice that there is not a large 
difference between the first two cases, while the last case displays two critical points (a third one is on 
the negative m axis). 
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FIG. 2. Reduced pressure versus m of the fragments obtained from the a, b 
and c parameters fit to the Landau free energy, Eq.(3) for the 64Ni+232Th. 
The curves correspond to vapor(open circles), superheating(open squares), 
first order (3 critical line-solid stars), see text.  
 
 


